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Abstract
We suggest a novel application of indirect inference method for estimating income
distribution using limited data. Generalized method of moments (GMM) method is
the classical way to estimate a parametric income distribution in this case. To use
GMM, explicit expression for moments are needed. In this paper, indirect inference
method allows us to estimate it without needing to find explicit analytical expression.
Theoretical properties of this estimator and a goodness-of-fit test are provided.
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1 Introduction

The distribution of incomes and wealth play an important role in the measurement
of inequality and poverty among people as well as nations. Various methods and
different parametric models for income distribution have been developed in a number
of articles by many economists— see e.g. Chotikapanich et al. (2007), McDonald
and Xu (1995), Hajargasht et al. (2012) and the references contained therein. In most
of this work, a specific parametric form is assumed for the income distribution, and
the generalized method of moments (GMM) is the usually preferred technique for
estimating the parameters involved. To use the GMM, one needs explicit expressions
for the expected values of the moments, or of the estimating functions used. The
calculation of estimating functions for a given model in terms of its parameters can be
complicated and sometimes not readily available. In this article, we employ a general
method of fitting thesemodels, usingwhat is known as the “indirect inference”method
which allows us to estimate these quantities for a given model without needing to
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find explicit analytical expressions, and thus provides what is essentially a flexible
computational technique for fitting income distributions.

While typically estimation of parameters by methods such as maximum likelihood,
the method of moments, and the GMM proceeds by having a random sample from
the given model, our main goal here is to introduce the indirect inference technique,
and to demonstrate how such parametric inference can be handled when only limited
data or just some statistics or empirical values of estimating functions based on it, are
available

This article is organized as follows. In Sect. 2, we give a brief introduction to some
measures of inequality including the Gini index and the Lorenz Curve (LC), because
our estimation of the income distribution is based on certain values of the empirical
Lorenz Curve as given byWorld Bank (see Table 2). We also briefly review here some
parametric models that are commonly used for income distributions. In Sect. 3, we
describe indirect inference method as a suitable approach for estimating parameters
from such limited information, and describe some theoretical properties that these
estimators enjoy. In Sect. 4, we test the optimization algorithm used in our method.
Also a Monte Carlo study is conducted to compare and evaluate these estimators. As
a demonstration of the power of this method, in Sect. 5, we illustrate it by comparing
the income distributions as well as inequality indices for India, China and the USA
over the past 30 years. We end with brief concluding remarks in Sect. 6.

2 Introduction to Some Inequality Measures

2.1 Lorenz Curve

Let {xi } denote data drawn fromaprobability distributionwith the distribution function
F(x), probability density function f (x), and mean μ. Let z p denote the quantile
corresponding to a proportion 0 ≤ p ≤ 1 i.e.

p = F(z p) =
∫ z p

0
f (t) dt (1)

and then the theoretical Lorenz Curve is defined as

L(p) = μ−1
∫ z

0
t f (t) dt =

∫ z
0 t f (t) dt∫ ∞
0 t f (t) dt

. (2)

The numerator corresponds to the total income of the bottom p proportion of the
population, while the denominator represents the total income for all the population.

Assuming that F is continuous, onemaywrite z = F−1(p) and a change of variable
to write the LC in a direct way as

L(p) = μ−1
∫ p

0
F−1(t) dt (3)
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Table 1 Lorenz Curve for some distributions

Distribution CDF Lorenz Curve

Exponential F(x) = 1 − exp−λx , x > 0 p + (1 − p) log(1 − p)

General uniform F(x) = x − a

θ
, a < x < a + θ

ap + θ p2/2

a + θ/2

Pareto F(x) = 1 − (a/x)a , x > a, a > 1 1 − (1 − p)(a−1)/a

Lognormal F(x) = 1/2 + 1/2 erf

[
log x − μ√

2σ

]
�(�−1(p) − σ)

Fig. 1 Lorenz Curve of
lognormal and exponential
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Table 1 shows LC expression for some common distributions. Notice that, for
exponential distributions, LC does not depend on the scale-parameter, a property that
could be used for goodness of fit tests (seeGail andGastwirth 1978). Figure 1 compares
LC for lognormal and exponential.

On the other hand, data-based empirical Lorenz curve is defined as follows: Let
0 < x1 ≤ x2 ≤ · · · ≤ xn be ordered data, say on incomes. Then the empirical Lorenz
Curve is defined as

L(i/n) = si/sn (4)

where si = x1 + x2 + · · · + xi , L(0) = 0, i = 0, . . . , n.

2.2 Gini Index

Gini index is a commonly used a measure of income inequality in a country, and takes
values between 0 and 1. As a U-statistic, it is also widely used in goodness of fit
tests. See e.g. Jammalamadaka and Goria (2004) who discuss a test of goodness of
fit based on Gini index of spacings. Recently, Noughabi (2014) introduced a general
test of goodness of fit based on the Gini index of data. One way to define Gini index
is through the expected mean difference.
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Definition 1 If X , Y denote two non-negative random variables drawn independently
from the distribution F , then the Gini index is defined as

Gini := E |X − Y |
2 · E(X)

The corresponding sample version can be written in the following way:

Gini(S) =
∑n

i=1
∑n

j=1 |xi − x j |
2(n − 1)

∑n
i=1 xi

(5)

It can also be calculated via LC (see e.g. Gastwirth 1972):

G(t) = 2 ·
∫ 1

0
(t − L(t)) dt (6)

2.3 Some Commonly Used Parametric Models for Income

The income distribution is heavily positively skewed and has a long right tail. The
popular income distribution models include Generalized Beta-2 distribution, Gamma
distribution, and the lognormal distribution.

Generalized Beta-2 distribution (7), which is widely used for modeling income
distributions, has the density

f (x; a, b, p, q) = axap−1

bap B(p, q)(1 + (x/b)a)p+q
, x > 0. (7)

Beta-2 (with a = 1), Singh–Maddala (with p = 1), Dagum (with q = 1) and Gener-
alized gamma (with q → ∞) are some of the special cases of this Generalized Beta-2
distribution (see McDonald and Xu 1995).

Lognormal distribution (8) is another popular model for income distributions, with
pdf derived from log(X) = Y which has a normal distribution

f (x;μ, σ) = 1

xσ
√
2π

e
− (log(x) − μ)2

2σ 2 , x > 0, σ > 0. (8)

There are many alternate models for income, but as an extensive analysis by Cowell
(1995) reveals, the more complicated four-parameter densities are not particularly
good choices because their parameters are hard to interpret and may have an over-
fitting problem. He argues in favor of lognormal and gamma densities which have two
parameters. Among distributions with two parameters, he argues for the Pareto density
for modeling high incomes, while gamma and lognormal are more appropriate for
modeling middle range incomes. In this article, our goal is not to get into the extensive
literature on income distributions, but chose the lognormal distribution for illustrative
purposes.
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3 Indirect InferenceMethod

3.1 Indirect Inference Framework

Gourierou et al. (1993) first introduced indirect inference as a simulation basedmethod
for estimating the parameters of an extensive class of models. This method is partic-
ularly useful when, the likelihood function is analytically intractable or considerably
difficult to evaluate. Indirect inference method greatly simplifies the estimation proce-
dure from the theoretical point of view because all we need is to simulate the required
moments or estimating functions for a candidate model.

Let π(θ) be an auxiliary parameter vector which is a function of θ corresponding to
Fθ , and let π̂ be an easy-to-compute and available empirical estimator of it. An exact
or explicit analytical expression for the estimating function π(θ) is not required, in
contrast with the generalized method of moment (GMM) proposed by Hansen (1982).
We then find an estimator of θ as the solution to the following optimization problem:

argmin
θ∈�

(π̂ − π(θ))T �(π̂ − π(θ))

where � is the parameter space, and � is a positive definite weight matrix (discussed
later). The idea here is to find the parameter vector θ such that π̂ and π(θ) are as
close as possible. If π(θ) is not readily available as an explicit function of θ , which
is usually what calls for indirect inference, it is calculated starting with a reasonable
initial value of θ , and thereafter an iterative process is triggered to search the optimal
θ until a specified convergence criterion is satisfied. Or it is estimated through the
software and approximated by a parametric bootstrap through the following steps:

Step 1 H samples of sample size N are simulated from Fθ . Since θ is unknown, we
start with a reasonable initial value of θ and iteratively search for the value
of θ that best fits the data, via the BFGS algorithm mentioned later on (see
also Fig. 2).

Step 2 For each sample h, h = 1, 2, . . . , H , its π∗h(θ) is calculated based on its
empirical distribution function.

Step 3 π(θ) could be approximated by π∗(θ) = 1

H

∑H
h=1 π∗h(θ).

Then the indirect inference estimator θ̂ is obtained as follows:

θ̂ = argmin
θ∈�

(π̂ − π∗(θ))T �(π̂ − π∗(θ))

Here it can be seen that the optimal choice of the weight matrix is given by � =
(V ar(π̂))−1, which ensures that the estimator θ̂ is asymptotically efficient. However,
since (V ar(π̂))−1 is itself a function of θ , we obtain an estimate for thismatrix through
an iterative two-stage procedure (similar to the two-step GMM) as follows:

Stage 1 We start by taking � = I with I denoting the identity matrix, to solve the
optimization problem and obtain an initial estimate θ1.
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Fig. 2 Estimation algorithm

SIMULATION
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Stage 2 The weighting matrix is then estimated with �̂ = (V ar(π̂(θ1)))
−1.

Again the expression for V ar(π̂(θ1)) is hard to derive and hence evaluated through
parametric bootstrap with simulations using the initial estimate θ1. The optimiza-
tion algorithm used in this case is the so-called Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm which is an iterative method that solves non-linear optimization
problems. This estimation procedure could be described by the genetic algorithm
shown in Fig. 2.

Having defined the proposed indirect inference estimator and described the practical
procedure for obtaining it, we now provide some asymptotic and robustness properties
of such an estimator in the following section, just for completeness.

3.2 SomeTheoretical Properties

We quote the regularity conditions and the asymptotic properties for such indirect
estimators from Gourierou et al. (1993). Denoting θ0 as the true parameter vector, we
need the following assumptions for the main theorem, Theorem 1 to hold:

(A1) ξn = √
n(π̂ − π(θ0))

D→ N (0, V ) where V = limn→∞ V ar(ξn)

(A2) There is a unique θ0 such that auxiliary estimator equals the auxiliary parameter:
π̂ = π(θ0) ⇒ θ = θ0

(A3) If � is estimated by �̂, then �̂
P→ �, where � > 0

(A4) π(θ) is a differentiable function with D (θ) = ∂π(θ)/∂θT .
(A5) The matrix DT (θ) �D (θ) is full rank.
(A6) � is compact.
(A7) The choice of the initial value of θ is independent of the estimation algorithm.

Theorem 1 (Gourierou et al. 1993) Under the Assumptions (A1)–(A7), the indirect
estimator is asymptotically normal, for any fixed H (the number of samples used in
Steps 2 and 3 above), and as n goes to infinity:

√
n(θ̂ − θ0)

D	−→ N (0,�)
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with � = (1 + 1

H
)�V�T where � = (

DT (θ0) �D (θ0)
)−1

DT (θ0)�.

This theorem provides the asymptotic normality of the estimator θ̂ from that of the
auxiliary estimator π̂ . Consistency follows from this asymptotic normality. Notice,

the factor (1+ 1

H
) is what distinguishes the asymptotic variance of the indirect infer-

ence estimator from that of the GMM: when H goes to infinity, they have the same
expression. H is set to be 100 in this article.

Now, a bit of explanation about how these conditions (A1) to (A7) relate to our
problem of using indirect inference using the empirical LC.

3.3 Lorenz Curve Based Indirect Inference

In our particular case, all we are given are the values of the empirical Lorenz curve
and we wish to determine the parameters of the given model that match these. We take
the empirical estimator π̂ to be the sample mean, along with the 9 points on empirical
LC, as given in Table 3. i.e.

π̂ = (X̄ , L̂(0.1), . . . , L̂(0.9))T .

Thus the auxiliary parameters π(θ) correspond to the theoretical mean and 9 points on
theoretical LC of the lognormal distribution. For Condition (A1), we need to check the
asymptotic normality of π̂ = (X̄ , L̂(0.1), . . . , L̂(0.9))T . By central limit theorem, X̄
is asymptotic normal. Under some mild regularity conditions, Goldie (1977) proved
the weak convergence of the Lorenz process ln( p) = √

n[Ln( p)− L( p)], 0 ≤ p ≤ 1,
to aGaussian process if L( p) is continuous at the empirical points. Thus the asymptotic
normality of π̂ = (X̄ , L̂(0.1), · · · , L̂(0.9))T is established.

Condition (A2) is often called the “global identifiability” problem in econometrics
and is often hard to prove and such, is assumed in many cases. In condition (A3),
our 2-step matrix �̂ is estimated through the 2-step GMM procedure described above
and thus is consistent. The rest of the conditions are standard conditions for indirect
estimators such as the oneput forward in this paper.We therefore have that the estimator
θ̂ proposed here is consistent and asymptotically normal.

3.4 Data

The data comes from the Website of the World Bank, and takes the form of summary
statistics including mean income, measures of inequality and 9 points on the empirical
LC. In Table 2, the poverty line is the minimum level of income deemed adequate in a
particular country. The head-count ratio is the proportion of a population lives below
the poverty line. The first part of Table 2 shows the data in the following way: the
first 10% of the population owns 1.7% of the total income, the second 10% of the
population owns 3.4% of the total income, etc. Since the sum of these 10 numbers
equals 1, only the numbers of the first 9 groups need to be included in the moment
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Table 2 Original data

USA’s income share by deciles (%)

Year Lowest 2nd 3rd 4th 5th 6th 7th 8th 9th Highest

2010 1.70 3.40 4.56 5.73 7.00 8.44 10.19 12.52 16.25 30.19

USA’s poverty index

Year Mean ($/month) Pov. line Headcount (%) Gini index (%)

2010 1917.38 1.90 1.00 41.06

Table 3 Transformed data (cumulative share)

By deciles (%)

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L̂(p) 1.70 5.10 9.66 15.39 22.39 30.83 41.02 53.54 69.77

Table 4 Goodness of fit assessment

USA 2010

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L̂( p) 1.70 5.10 9.66 15.39 22.39 30.83 41.02 53.54 69.77

L( p, θ̂)(lognormal) 2.15 5.63 10.14 15.63 22.31 30.59 40.66 52.98 69.17

L( p, θ̂)(Gamma) 1.29 4.22 8.56 14.34 21.55 30.49 41.39 54.99 72.39

conditions. The cumulation of these 9 numbers yields the 9 points on the empirical
LC L̂( p) in Table 3.

With our indirect inference estimator θ̂ , L̂( p) and L( p, θ̂) are compared as shown
at Table 4. This table contains lognormal and gamma, and may be extended to other
models to assess how well these distributions fit the data. The test statistic Jn given
below can be used to test how well a given income distribution fits the data

Jn = n
(
π̂ − π(θ̂)

)T
�̂

(
π̂ − π(θ̂)

)
D→ χ2

M−K (9)

where n is the number of individuals surveyed, M the dimension of auxiliary param-
eters, K is the number of parameters in the parametric model with �̂ representing the
two-step weight matrix. One problem with this statistic is that n is usually unknown
and we will not attempt to use it here.

4 A Simulation Study

4.1 Numerical Optimization

The default optimization algorithm used in R is Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm. Similar to the Newton-Raphson method, it is an iterative method
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Fig. 3 Objective function versus
(θ1, θ2)
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Fig. 4 Objective function versus
θ2
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for solving non-linear optimization problems. In this case, the parameter space for σ

is (0,∞). Since it has a lower bound, sometimes this optimization algorithm breaks
down when searching for points larger than but close to 0. Instead, we would estimate
the parameters θ = (θ1, θ2), where (μ, σ ) = (θ1, exp(θ2)). The estimated parameter
σ̂ approximately equals log(θ̂2).

Here we want to verify that the estimated point is the local minimum. The true
parameters θ = (4.8276,−0.4963) is obtained from the estimate value of data in
Table 2. The data (9 points on Lorenz curve and mean) is simulated from lognormal
distribution with above parameters with sample size N = 1000. The estimated value
θ̂ = (4.8381,−0.4515). It has a local minimum as can be seen from Figs. 3 and 4.
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4.2 Indirect Inference Compared to theMethod of Moments: A Monte Carlo Study

Instead of the 9 points on the empirical LC curve, suppose we only have the sample
mean and samplemedian. For lognormal distribution, themean E X = exp(μ+σ 2/2),
and theMedianm = exp(μ). By setting these equal to their empirical parts, themethod
of moment estimators are given by:

μ̂ = log(m), σ̂ = √
2(log(x̄) − log(m)) (10)

Suppose the true parameters (μ, σ ) = (4.8276, exp(−0.4963)). Box-plots to
compare these two estimators are obtained by Monte Carlo study with sample size
N = 1000 and Monte Carlo replication B = 1000 in Figs. 5 and 6. Our indirect
inference method has smaller variance especially for σ .

5 Case Study

Greenwood and Jovanovic (1990) found a positive correlation between growth and
income inequality in a cross-section of international data. Here we are interested to
see the change of India’s income distribution and inequality over the past 30 years.
In addition, income distribution and inequality of India and China are compared with
USA, the largest economy.

5.1 Data

Data is collected every 3 years by the World Bank. It takes the form of summary
statistics as shown at Table 5 e.g. for India.
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Fig. 6 Boxplot of σ̂

Table 5 Income inequality of India: 1983 versus 2010

India (Urban)’s income share by deciles (%)

Year Lowest 2nd 3rd 4th 5th 6th 7th 8th 9th Highest

2010 2.92 4.04 4.87 5.76 6.76 7.95 9.45 11.49 15.01 31.75

1983 3.59 4.61 5.57 6.51 7.50 8.60 9.94 11.75 14.80 27.12

Poverty Index

Year Mean ($/month) Pov. line ($/day) Headcount (%) Gini index (%)

2010 129.75 1.90 19.85 39.35

1983 89.36 1.90 34.20 33.33

5.2 Some Results

With the 9 points on the empirical LC, a smooth empirical LC is estimated by the
non-parametric spline technique in R. The income distributions are assumed to be
lognormal and are estimated by above indirect inference method. The results are
illustrated in Figs. 7, 8, 9, 10 and 11.

Although India’s Gini index slightly increased in the last 30 years, the population
proportion of low income class decreases (Fig. 8). The population proportion of low
income class of India is significantly larger than USA’S, but smaller than China’s
(Figs. 9, 10).
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Fig. 7 Lorenz Curve of India
1983 versus 2010
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Fig. 9 Lorenz Curve of 2010
India versus China
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Fig. 10 Income distribution of
2010 India versus China
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Fig. 11 Income distribution of
2010 India versus USA
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6 Conclusions

We develop a practical estimation framework using indirect inference for fitting and
analyzing income distributions and income inequality, based on a limited amount
of data, such as the empirical Lorenz curve. This simulation based method is very
flexible, and allows the parametric models and the auxiliary parameters to be adjusted
adaptively, and is a practical tool in many other contexts. Interested readers may obtain
the R-code for implementing indirect inference in this context, from the authors.
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